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Abstract. Whitham’s theory of nonlinear water waves is applied to a classical field with the 
lagrangian density Y = +{[(dP4)(d,,4) - m2d2]/( 1 +A+’)). This is the isoscalar analogue 
of a chiral invariant SU(2) 0 SU(2) lagrangian with symmetry breaking term included. 
The corresponding field equation admits simple harmonic plane-wave solutions. We find 
that the important field quantities ofthese waves, namely the wavenumber k and amplitude A 
obey a system of first-order partial differential equations. When the coupling parameter 1. 
is negative in sign, the system is hyperbolic, which implies that any inhomogeneities in k and 
A propagate with certain (amplitude-dependent) velocities. These velocities, which are the 
nonlinear generalization of the group velocity in the Whitham sense, are calculated. 

1. Introduction 

Considerable difficulties are encountered in the evaluation of the S matrix elements in 
quantum field models involving chirally invariant lagrangians or other non-polynomial 
lagrangians with and without derivative couplings, due to the occurrence of infinite 
number of diagrams in each order of perturbation. Various covariant summability 
techniques have been prescribed by many authors recently (for example, Faddeev and 
Slavanov 1973 and references therein). On the other hand, consideration of the classical 
field equations of motion also leads to useful observations. For instance, the application 
of the method of characteristics (Velo and Zwanziger 1969, Mathews and Seetharaman 
1973) to various field equations resulted in a number of interesting observations regarding 
the causality property of propagation. I t  is the aim of the present paper (and papers to 
follow) to study the wave propagation properties of certain typical nonlinear field 
models of current interest in quantum field theory, by taking advantage of the recent 
interesting developments in the nonlinear wave problems of fluid and plasma dynamics. 

There exists a recently well developed theory of nonlinear water waves by Whitham 
(1965, 1967), Lighthill (1965, 1967) and others (Hayes 1973 and references therein). This 
‘heory is being successfully applied to various problems in fluid and plasma dynamics. 
We adopt in this paper essentially Whitham’s original method (Whitham 1965), where 
for the first time the concept of group velocity has been extended to nonlinear wave 
problems. 

Whitham’s theory is applicable to any field problem, if one has periodic steady- 
profile solutions. Of course not all the field problems of interest in quantum field theory 
have simple elementary wave solutions. But at least in certain typical cases we do have 
elementary plane-wave solutions which may be handled easily. The &b4 field contains 
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such solutions (Mathews and Lakshmanan 1973). Another model with the lagrangian 
density 

which we recently reported (Mathews and Lakshmanan 1974a) has very simple wave 
solutions. In the massless case this is the isoscalar analogue of the chiral invariant 
SU(2) x SU(2) lagrangian in the Gasiorowicz-Geffen coordinates (Delbourgo et a1 1969) 

In this paper we study the propagation and group velocity properties of this model 
(1) using Whitham’s technique (without taking recourse to Whitham’s W function). In 
a subsequent paper the results of the 44 field model will be reported. In $ 2 we give a 
brief account of Whitham’s theory relevant for our purpose. In $ 3 we establish the 
system of quasi-linear partial differential equations for the wavenumber k and amplitude 
A starting from a set of two conservation equations. We also show how the conservation 
of waves comes about in a natural way. In $ 4  by an application of the method of 
characteristics we investigate the group velocity property of the waves and show that 
only when I < 0 the above system of partial differential equations is hyperbolic. In this 
case the changes in k and A propagate with two different velocities whose riemannian 
invariant forms are also found. Both of these group velocities have the correct J. + 0 
limit. 

2. Whitham’s theory 

Whitham’s theory (Whitham 1965) is essentially based on the observation that even 
though exact general solutions of nonlinear wave equations are out of the question for 
the present, plane-wave solutions may always be given in the form 

4 = @ ( X ;  O, k,  Ai) 
where 

X = k x - u t ,  o = o ( k ,  Ai). 

(3) 

(4) 

(For simplicity we restrict ourselves to the one space-ne time dimensional case.) He 
shows that for a more general category of solutions consisting of those which can be 
approximated by plane waves locally (so that they can be represented by (3) and (4) 
with k ,  Ai replaced by the slowly varying functions k(x ,  t ) ,  Ai (x ,  t )  which vary little over 
several wavelengths) the temporal behaviour, eg, the motion of a ‘wave packet’, can be 
deduced from a consideration of conservation equations in the following way. 

From any governing equation of motion of a system, one may write down a number 
of exact conservation equations of the form 

ap as 
at  a x  

aP a3 -+- = 0 
at a x  

-+- = 0. 

Then these conservation equations may be averaged as 
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where the quantity 

I f  the wave train is approximately uniform in the distance 25, the mean quantities P and 
may be calculated from the uniform solution (3) and (4), holding k and Ai  constant. 

Assuming that the interval x-<  < x’ < x + 5 includes a small number of waves, these 
mean values will be functions of k and Ai  alone. Thus the exact equation (5) is replaced 
by the approximate equation 

a -  a -  
d t  ax -P(k ,  Ai)+--S(k, Ai) = 0, 

where P ,  S are calculated to be the mean value over a single wavelength in terms of the 
steady-profile solution (3) with (4) : 

1 P A  

where 9(0} denotes the function P in terms of (3). 
Choosing the appropriate number of conservation equations one obtains a system 

of partial differential equations for the dependent variables k and A i .  In particular for 
the problems considered by Whitham and others the equations are hyperbolic and 
homogeneous in the derivatives even when the equations for the field C#J are not. Then 
the propagation of these important physical quantities is described by the theory of 
characteristics. The generalized group velocities for the nonlinear problems are defined 
as the characteristic velocities of the above system of hyperbolic differential equations 
and these are the propagation velocities for the changes in a wave train. 

3. Themodel 

The Euler-Lagrange equation of motion corresponding to the lagrangian (1) is 

(1 + ~ 4 2 ) ~ a , C # J + m 2 4 - ~ 4 ( a , C # J ) ( a , 4 )  = 0. (10) 

4 = C#J(wt-k . x )  (11) 

The elementary Lorentz-invariant steady-profile solution of the form 

is known (Mathews and Lakshmanan 1974a) to be (apart from an unimportant initial 
phase) 

(12) 4 = A sin(wt--k . x) 

with the amplitude-dependent dispersion relation 

Even the single-particle analogue of (lo), ie the case of zero space dimensions, has inter- 
esting properties (Mathews and Lakshmanan 1974a), whose quantized version may also 
be solved exactly analytically (Mathews and Lakshmanan 1974b). I t  is assumed that in 
(13) when 2 < 0, the solution is well behaved but (AI < lA[-”*. For [ A (  > 
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‘tachyonic’ in nature, where the dispersion relation is of the form (0’ - k’) = - m’/ 
(lAIA’- 1) < 0. However the field energy and momentum densities pertaining to this 
tachyonic solution become singular at various space-time points and so we discard this 
solution as physically uninteresting. 

From the governing equation (10) we may derive the following set of two independent 
conservation equations (for simplicity we consider the one space dimensional case, 
assuming ( k  = k, 0,O)) : 

and 

Here the energy density of the field is 

the momentum density is 

and 

One may easily see that (14) and (15) are the energy-momentum conservation equations 

restricted to one space-one time dimensions, where the canonical energy-momentum 
tensor is given by 

Then in the spirit of Whitham the quantities & 9 and Y in the exact equations (14) 
and (15) are replaced by their mean values in terms of the solutions (12) with (13) over 
a single wavelength. Thus we have the field energy and momentum per unit length as 

- 1 1 Znik A 2 [ ( 0 2  + k’) cos2(kx - of) + m’ sin’(kx - at)] 
% = - -  dx 

2 2nlk J’, 1 + AA2 sin’(kx - of) 

1 + AA’)”’ - 13 + 
- m 2  l i 2  
9=- kz+- ‘( E, l+E.A’) 

[(l +AA2)”’ - I], 

while the average of 9’ is 
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The nature of the field energy d = 2 is shown in figure 1 for both the signs of 1.. I t  may 
be noted that when ,? < 0, the field energy becomes infinite at finite amplitude 
(IAI = IAl--’ ’), just as in the case of the field (Mathews and Lakshmanan 1973) 
when 1. < 0. But unlike the i44 case, the ‘tachyonic’ solutions here are not physically 
interesting as mentioned earlier. 

A 

Figure 1. The field energy 8 as a function of the amplitude A (in units of A-’”) for both I > 0 
and I i 0. 

Coming back to equations (14) and (15), the substitution of the mean values (19H21) 
gives us the following system of quasi-linear partial differential equations for k and A 
after some manipulations : 

ak,+bk,+cA,+dA,  = 0 

bk,+ak,+dA,+eA,  = 0, 

a = 2k ,  

and 

where 

and 

b = CO( I+$) .  

AA 
(1 + Z,A2)’/2 - 1 

m2 AA 
1 c = (  (1  + ].A2)’ 

- - ( ( l + i . A 2 ) 1 / 2 -  ~ - ~ ~ + ~ . A 2 ) 3 / 2 ) ( ~ + ~ ~ 2 ~ 1 ’ 2  

k2( 1 + 1,A2)3’2 + m2 

CO2 

k 
d = -e, 

0 

k2 
(1+AA2)1/2- 

e =  ( 



894 M Lakshmanan 

To verify the conservation of waves we proceed as below. Multiplying equation (22) by 
(/c/o) and subtracting from (23) we obtain 

( a k - b ) k , +  ( { - a ) k , + ( d k - s ) A ,  = 0 

which on simplification becomes 

Am2 A 
k r + ( k ) k x - w ( I + A A  ) 2 A x  = 0. 

This is exactly equivalent to the equation 
m2 112 

-+- at ax = 0, ( l + A A 2 )  ' 

a =  k 2 + -  ak  aw 

One may think of k as the density of waves and w the flux of the waves. Thus the con- 
servation of waves automatically follows from the approximate conservation equations 
(22) and (23). 

4. Propagation velocities 

To investigate the nature of the equations (22) and (23) we make use of the method of 
characteristics and determine the nature of the characteristic roots. I t  is well known 
(Courant and Hilbert 1962, Jeffrey and Taniuti 1964) that for the system of first-order 
partial differential equations 

a " u ~ + a " u ~ + b " u ~ + b ' 2 u y 2  = 0, 

a 2 ' u ~ + a 2 2 u f + b 2 1 u ~ + b 2 2 u ~  = 0 

the characteristic curves C are given by the equation 

dx:dy = r ,  or Q(x,y,$) = 0, 

where the characteristic roots r are given by the determinantal equation 

(32) 

(33) 

I f  both the roots of (34) are real and distinct then the system is totally hyperbolic, while 
if both of them are complex the system is elliptic. 

For our system (22) and (23) the characteristic equation becomes 

b - r a  d-re  
a - r b  e - r d  

1 = o .  (35)  

On substitution of the values of a, b ,  c, d and e from equations (24H28), equation (35) 
becomes 

[ k 2 (  1 + iA2)3 '2  + m2].r2 - 2wk( 1 + L12)3'2r  + { k2(  1 + iA2)3'2 + m2[(  1 + AA2)' /2  - 1 1 ;  = 0. 

(36) 
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Thus the two characteristic roots of the system are given by 

We immediately see that when A > 0 both the roots (37) are complex, making the system 
(22H23) elliptic. So the corresponding field modes are unstable in this case. This might 
be due to the fact that the total field energy is always less than that of the linear case (that 
is the 2. = 0 limit). I t  is interesting to note that even in the case of the single-particle 
analogue of the lagrangian (1) (Mathews and Lakshmanan 1974a), the system executes 
aperiodic motions beyond a finite energy if A > 0 and there are regions of instability 
for the periodic oscillations. When A < 0, both in the single-particle and field (figure 2) 
cases, the total energy becomes infinite even at finite amplitude. This will have import- 
ant repercussions in the quantum case too (Mathews and Lakshmanan 1974b). In the 
remaining we consider only the 1 < 0 case. 

Figure 2. The group velocities uII (for the 1. < 0 case) as a function of the amplitude A for 
various values of 1 (distinguished by different types of curves). In each of these cases, the 
maximum value of A is restricted in such a way that 1.4 i 11.1 - ‘ I 2 .  

When 2, is negative (and IAl < 111- 112) the characteristic roots (37) are real and distinct 
and hence the system (22)-(23) is hyperbolic. Then the characteristic form (see for 
instance, Courant and Hilbert 1962, p 429) in this case is found to be 

or 

on the characteristic curves 
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Here i = 1,2 correspond to the plus and minus signs in the numerator of the equations 
(38H40). The characteristic velocities ug,  may be considered as the generalization of the 
group velocity of the linear case for our model (1). They are the velocities of propagation 
of changes in the simple harmonic wavetrain (12)T. 

In the limit IAI -, 0, we see that ug,  = dx/dt = k/w is a double characteristic along 
which k as well as the energy density are constants. In the nonlinear case (10) this splits 
up into two distinct characteristic velocities (if A < 0) whose magnitudes are always less 
than 1 (as shown in figure 2). 

To discuss the Riemann invariants, that is, functions which are constant along 
characteristics, it is more advantageous to talk in terms of the quantities U = (k /w)  and 
A. Then with the aid of the dispersion relation connecting w, k and A, the characteristic 
form (39) may be re-expressed as 

F(U)dUfG(A)dA = 0 (41) 

on the characteristic curves 

dx U(1- /LIA2)”* f ( 1 -  U2)[1 -(1- IAIA 2 ) 1/2  3 1 /2  c ,  : T i  cg, F - = (42) dt (l-IAlA2)1’2U2+(1- U 2 )  

F ( U )  = ( l - P ) - l  (43a) 

(i = 1,2). Here 

and 

I4A 
[ 1 - (1 - li/A2)1’2]1’2( 1 - / i /AZ) ‘  

G ( A )  = 

Thus any wavetrain of the system (10) with U = U. and A = A ,  splits up after 
interaction into two simple waves (see for instance, Jeffrey and Taniuti 1964, p 69), one 
on the characteristic C, whose Riemann invariant from (41) is 

F ( U )  d U +  j,: G ( A )  dA = constant, (44) 

along which the values of U and A are constants. The other wave is on the C- character- 
istic whose Riemann invariant is the expression (44) with negative sign in front of the 
second term. 

Finally, one may derive ‘shock conditions’ similar to problems in fluid and gas 
dynamics. However their significance is yet to be explored in the present case. 
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f These are also different from the energy flow velocity, ie the ratio of energy flux to energy density. 

We note that in the Ill +. 0 limit, uE --t k/w 
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